(The flood stage is 15 feet.)

Year.	Month.	Highest stage.	Authority.					
1872 1892 1893 1903 1904 1910 1913 1914 1916 1916 1918	August	31. 5 20. 2 21. 0 30. 0 30. 0 26. 0 25. 5 16. 8 20. 8 21. 7 23. 5 26. 2	Local reports. United States Weather Bureau. No flood. Estimated on rise at Roma just above Rio Grande. Estimated on rise at Fort Ringgold. Estimated. Do. United States Weather Bureau. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do					

FLOOD WARNINGS IN NEW ZEALAND.

The problem of flood prevention in New Zealand is dealt with in a recent report by the dominion meteorologist, Lieut.-Col. D. C. Bates, to whom we are indebted for the following notes. The interference of civilization with natural conditions is not usually in the direction of lessening flood damage, clearing and drainage, causing the water to run off quickly, thus increasing the scouring of slopes and deposition of silt in the lower reaches. The effect is to raise the general level of the lower beds and aggravate flooding. The problem of prevention is one which appears only to be soluble as a national task, the reconciliation of conflicting interests being too difficult to achieve on any other lines and the report recommends strongly the organization of both prevention and warnings on a proper basis.

Attention is directed to the abnormal flooding which

Attention is directed to the abnormal flooding which not infrequently occurs when the winter snows melt, these being entirely disproportionate to the actual amount of precipitation. Apart from snow the run-off is stated to be approximately 25 per cent of the precipitation, a figure which we imagine must be applied only with a very generous margin of uncertainty. Experience in the British Isles shows us that the expression of the run-off as a percentage of the amount of precipitation is misleading, since quite apart from the very great variability at different seasons and under different conditions of soil and weather, recognized by Mr. Bates, it is practically certain that a much larger proportion of run-off occurs when the average rainfall is large than when it is small.

The prediction of floods may be attempted on (a) the weather chart; (b) the records of rainfall in the river basins, and (c) the actual rise of the streams in their upper reaches. Owing to the known uncertainty, especially in respect to locality, in forecasting heavy rain, the first mentioned method is only applicable in a general manner. The second source of information is undoubtedly capable of development by provision of more observing stations and improving means of communicating records, but the actual rising of the river affords the most certain and striking means of forecast, not only for the time but for the height of an inundation.

The report recommends the closer observation of rainfall, the establishment of flood gages, and the formation of a committee of safety or rivers board charged with the organization and administration of flood warnings in consultation with the dominion meteorological service, the public works, and railway departments.—Symons's Meteorological Magazine, Oct., 1919, p. 101.

PRECIPITATION AND RUN-OFF IN THE DRAINAGE BASIN OF THE ODER.

By KARL FISCHER.

[Abstracted from Yearbook of Hydrology of North Germany, Special Communication, Vol. 3, No. 2.]

Records of precipitation and run-off for eleven subdivisions of the Oder drainage basin were maintained for the most part during the period 1896 to 1905. Stream discharges were determined from rating curves based on current-meter measurements. Rainfall records for the determination of the mean precipitation on each area were presumably numerous and complete, but are not given. Records of precipitation and run-off, either annual or monthly, are not given in complete form, but only in the form of averages for five-year periods and for the complete records.

The most important results, perhaps, are the general averages for the different streams which are summarized in the accompanying tabulation. Plotting rainfall against yield, the author finds an approximately linear relation, which holds however, only in a general way for the different subdivisions of the Oder Basin. The author expresses these relations by means of formulas of the linear type used by Penck—

$$y = 0.702p - 260.5$$
 year,
 $y' = 1.167p' - 181$ winter,
 $y'' = 0.512p'' - 118$ summer,

in which y is the yield of the drainage basin in millimeters and p the precipitation in millimeters.

These formulas are intended to apply only to the average yield of subdivisions of the Oder basin and not to the yield of any given subdivision in different years.

There are several exceptions which are discussed by the author. Transposing the formulas so as to express water losses in terms of precipitation, the author finds that the water losses decrease as the precipitation increases for the winter season, but water losses increase with precipitation both for the summer season and for the year as a whole.

The paper is accompanied by numerous tables and diagrams, among which may be specially noted hydrographs of monthly precipitation, yield, and water losses at each gaging station. These hydrographs are in general very similar, showing in nearly all cases a minimum of precipitation in January and maximum in July, a maximum of yield in April, and a maximum of water losses in July, and a minimum of water losses in February or March.

Summary of Karl Fischer's gagings in the Oder drainage basin, 1896-1905.

[P-Precipitation in mm. Y-Yield in mm. L-Water losses in mm. Winter-Nov.-Apr. Summer-May-Oct.

	Drain- age	Winter.			Summer.			Year,		
Stream and location.	area (square kilo- meters).	P'.	Y'.	Ľ.	P".	Y".	L".	Р.	Y.	L.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1. Oder at Ratibor 2. Malapane. 3. Glacial Netz. 4. Boher. 5. Lansitz Netz. 6. Mountain areas 1+3+4+5. 7. Warthe, at Posen. 8. Netz., at Vordamm. 9. Warthe, at Landsberg. 10. Oder, at Steinau. 11. Oder, at Pollenzig 12. Oder, at Hohenaathen.	6,737 2,037 4,534 5,532 21,441 21,820 15,893 29,878 47,293 109,564	285 292 263 282 298 282 221 216 216 254 250 233	160 137 137 155 134 148 73 74 71 115 97 81	125 155 126 127 164 134 148 142 145 139 153 152	551 435 496 438 451 489 337 321 326 460 427 375	151 112 131 132 102 132 46 54 49 104 85 65	400 323 365 306 349 356 291 267 277 356 342 310	\$36 727 759 720 749 770 558 537 542 714 677 608	311 249 268 287 236 280 119 128 120 219 182 146	525 478 491 433 513 490 439 409 422 495 495 462

COMMENT.

It is unfortunate that the author has not presented monthly or at least annual results in detail. It appears probable that the relation of precipitation to run-off and water losses could have been better established for this drainage basin from an analysis of the results for individual stations, by the method of group means, than by a comparison of the pentad means for different stations. The latter may include in a single mean the results for years of excessive and years of deficient precipitation. It is pretty well established that the relation of precipitation to run-off is not linear as most European investigators following Penck have assumed it to be. The method of determining the relation of precipitation to run-off by comparing average results for areas representing different subdivisions of a larger drainage basin, as used by the author, is novel. Perhaps this method has not hitherto been used, because it is not generally applicable. fact that it does apply reasonably well to the Oder drainage basin is undoubtedly due to the marked similarity of meteorologic conditions, especially as regards distribution of rainfall over the different subdivisions of the Oder drainage basin. However, there must be an appreciable difference in topographic and agricultural conditions affecting run-off in the different subdivisions of the area which is not taken into account by the author.

The author's use of hydrologic winter and summer seasons beginning with November and May, respectively, is to be commended.—R. E. Horton.

BIBLIOGRAPHY.

RECENT ADDITIONS TO THE WEATHER BUREAU LIBRARY.

C. FITZHUGH TALMAN, Professor in Charge of Library.

The following have been selected from among the titles of books recently received as representing those most likely to be useful to Weather Bureau officials in their meteorological work and studies:

Anfossi, Giovanni.

Ciò che sappiamo intorno alle precipitazioni nell'alto Appennino Ligure-Emiliano. Reggio-Emilia. 1914. 14 p. fold. chart. tables. 26½ cm. (Estratto dalla "Rivista tecnica" del Collegio degli ingegneri Provincia di Reggio Emilia, no. 3. 1914.)

Bavaria. K. Meteorologische Centralstation.

Münchener aerologische Studien, von A. Schmauss. No. 7. Die G1-G4 p. charts. 2 tables. 32½ cm. (Sonderabdruck aus den "Beobachtungen der meteorologischen Stationen in Königreich Bayern." Band 36. Jahrg. 1914.)

Bénévent, Ernest.

La neige dans les Alpes françaises. Grenoble. 1918. 95 p. 8 charts. 12 tables. 25½ cm. (Extrait des Annales de l'Université de Grenoble. Tome 29, no. 3, 1917.)

Dorno, C[arl Wilhelm Max].

Physik der Sonnen-und Himmelsstrahlung. Braunschweig. 1919. vii [2] 126 p. charts (part. fold.) tables. 221 cm. Added t.p. with heading: Die Wissenschaft. Band 63.

Eredia, Filippo.

La pressione barometrica a Tripoli. Roma. 1919. 6 p. tables. 231 cm. (Estratto dal Bollettino della Reale società geografica

italiana. Fasc. 3-4, 1919, p. 216-219.)
Sul soleggiamento a Mogadiscio. Roma. 1918. 11 p. incl. tables. 24 cm. At head of title: Ministero delle colonie. (Estratto dal Bollettino d'informazioni. Anno 5, N. 2-12, 1918.) L'umidità dell'aria in Sicilia. 7 p. tables. 24 cm. (Dal Bollettino dell'Accademia Gioenia di scienze naturali in Catania. Fasc. 46, 1919.)

Indo-China. Service météorologique.

Bulletin pluviométrique . . . Année 1918. Phu-Lien. 1919. n.p. fold. chart. incl. tables. 39½ cm. At head of title: Gouvernement général de l'Indochine. Observatoire central de l'Indochine.

Maurer, [Maximilian] Julius.

Unsere alten Zürcher Witterungsregister. 3 illus. 27 cm. (Excerpted from Vierteljahrsschrift der Naturforschenden Gesell schaft, Zürich. 62 Jahrg. 1917. Heft 1-2. p. [470]-478.)

Montana. Dept. of agriculture and publicity.

Montana precipitation charts. Showing the precipitation in the growing months of April, May, June, July, and August, for a series of years in different sections of the state, up to and including 1919. Data furnished by the U.S. Weather bureau, Department of agriculture. Helena, Mont. 1919. [16] p. map. charts. 23½ x 31 cm.

Nordenskjöld, Otto.

Einige Züge der physischen Geographie und der Entwickelungsgeschichte Süd-Grönlands. Leipzig. 1914. 2 fold. plates. 2 maps. 24½ cm. (Sonderabdruck aus der Geographischen Zeitschrift. Band 20. Heft 8-11. p. 425-441; 505-524; 628-641.) [Climate, p. 509-514.]

Ota, G.

Principles of meteorology. Tokyo. 1919. 3 p. l., 12 p. 5 fold. diagrs. 19 cm.

Smyth, Henry Field.

A critical review of methods for the study of dust content of air. 10 p. 27½ cm. (Reprinted from the Journal of industrial hygiene. July, 1919. Vol. 1, no. 3, p. 140-149.) Bibliography, p. 9-10.

Suggested modifications of the standard method for the study of the dust content of air. table. 25½ cm. (Reprinted from American journal of public health, Vol. 9, no. 10. Oct. 1918. p. 769-771.)

Southport. Fernley observatory.

Annual report, and results of meteorological observations for the year 1918; with an appendix, containing hourly wind direction and velocity averages, for 20 years: by Joseph Baxendell. Southport, London, 1919. 32 p. front. (fold. chart.) tables. 25 cm. At head of title: Meteorological office, London. Southport auxiliary observatory. . .

Stevens, Neil E[verett].

Temperature in relation to quality of sweetcorn, by Neil E. Stevens and C. H. Higgins. Washington. 1919. cover-title. 275-284 p. chart. 5 tables. 26 cm. (Reprinted from Journal of agricultural research. Vol. 17, no. 6.) Literature, p. 283-

U. S. National advisory committee for aeronautics.

Effect of compression ratio, pressure, temperature, and humidity on power. Washington. 1919. 32 p. charts. tables. 29½ cm. Report no. 45. Preprint from 4th Annual report.

Wedderburn [Ernest Maclagan].

The application of meteorology to gunnery. Shoeburyness, Eng. 1919. 422 p. tables. 33½ cm.

RECENT PAPERS BEARING ON METEOROLOGY AND SEISMOLOGY.

C. F. TALMAN, Professor in Charge of Library.

The following titles have been selected from the contents of the periodicals and serials recently received in the Library of the Weather Bureau. The titles selected are of papers and other communications bearing on meteorology and cognate branches of science. This is not a complete index of all the journals from which it has been compiled. It shows only the articles that appear to the compiler likely to be of particular interest in connection with the work of the Weather Bureau.

American society of heating and ventilating engineers. Journal. New York. v. 25. January, 1919. Hayhurst, Emery R. Experiments in air conditioning the home.

p. 1-14.

Knowles, E. R. Dust determinations in air and gases. p. 67-98. West, Perry. Air washing and humidification for school buildings. p. 99-109.